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ABSTRACT 

The main objective of this work is to describe the application of Decentralized sliding mode 

observer (DSMO) based fault detection and isolation (FDI) scheme for nonlinear variable 

speed wind energy conversion system (VSWECS) designed by a polytopic Quasi LPV 

representation, which is able to describe it as a convex combination of submodels defined by 

the vertices of a convex polytope. Stability conditions are performed by using Linear Matrix 

Inequalities (LMIs). In this work, we focus on the estimation and the reconstruction of the 

possible actuator and sensor faults to guarantee the efficiency and the continuous operation of 

this system. Simulation results are given to demonstrate the validity and the effectiveness of 

the proposed approach. 
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1. INTRODUCTION

Today, the use of renewable energy has become a strategic, 

inevitable and necessary choice in front of the unexpected 

increase of classical energy costs. It is offer natural, 

economical, clean and safe sources. Wind energy is an 

example. Its application has made a remarkable progress these 

last years, providing a considerable production of electrical 

energy with less spending [1]. During its operation, it involves 

no rejection and waste [2].  

Wind turbines (WT) are attracting increasing attention as 

alternatives for renewable energy generation; they are the most 

common wind energy conversion systems (WECS). 

The variable speed WECS can be threatened by anomalies 

which may cause deterioration of its performances or even 

lead a complete stop of the installation [3]. The condition 

monitoring status has become essential to ensure its 

operational safety and availability. 

The fault diagnosis procedure is therefore necessary to early 

predict the apparition of dysfunctions in order to avoid them 

or to limit their consequences [4]. Several researchers 

investigated WT fault diagnosis and used, among others, 

model-based techniques to detect and isolate faults. For 

example, an FDI is used to control the appearance of fault, and 

a bank of observer is used to identify the fault kind and its 

position [5]. 

Recently, many authors exploited the fuzzy modelling 

methods for FDI. Park et al [6] have given the design of a 

robust adaptive fuzzy observer for uncertain nonlinear 

systems. A new approach to active sensor fault tolerant output 

feedback tracking control for WT systems via TS model is 

presented in [7]. Many authors have proposed SMO design 

methods [8-11]. 

Walcott and Zak [11] approach necessity a symbolic 

manipulation package to determine the conception problem 

which is formulated. To obtain the canonical form, Edwards 

and Spurgeon [9] give a canonical form for SMO design and a 

numerically docile algorithm to calculate the gain and the state 

transformation matrices. Quasi-LPV model predictive 

reconfigurable control for constrained nonlinear systems is 

described in [12].  

The main challenges of FDI design for WT are: the 

aerodynamic rotor torque is not measured; and the wind speed 

is only measured at the hub position with high noise. 

In this article, a methodology of diagnosis nonlinear WT 

system, designated by polytopic Quasi-LPV models using 

fuzzy observers is proposed. Usually, the conception of a 

Takagi-Sugeno fuzzy observer need an accurate mathematical 

description of the process under regard in the form of a 

polytopic Quasi-LPV dynamic model, which comprises both 

vertex polytope linear models and activation functions. The 

vertex polytope linear models are state space affine models 

that can be derived directly from first principles or from 

empirical models. 

The remainder of this paper is organized as follows: Section 

2 describes the nonlinear WT modelling. In section 3 outlines 

the establishment of a polytopic Quasi-LPV model using the 

polytopic transformation method to represent the process as a 

convex combination of submodels determined by the vertices 

of a convex polytope. These submodels are joined by a convex 

weighting function to construct the global model. The concept 

and structure of fuzzy Sliding mode observers and residual 

generation are presented in Section 4. Several simulation 

results are presented in Section 5 to show the validity and the 

effectiveness of this approach. Finally, conclusions and some 

remarks are drawn and given in Section 6.  

2. WIND TURBINE MODELLING

In this part, we present a mathematical model of the WT 

which is used to design a Quasi-LPV model. We consider a 

specific variable speed, variable pitch WT model with three 

blade horizontal axis, and a rating power of 4.8 MW. This 
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model contains four sub-models: the Blade and Pitch System, 

the Aerodynamic Model, the Drive Train and the Generator 

and Converter, as shown in Figure 1 [13]. 

 

 
 

Figure 1. Wind turbine bloc diagram 

 

2.1  Aerodynamic model 

 

The kinetic energy in the wind is captured by turbines and 

converts it into a torque. The aerodynamic power of the WT 

aP  and the aerodynamic torque applied to the turbine’s rotor 

aT  are expressed by the following equations: 
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where qC is the thrust coefficient,  is the air density, R  is 

the blade length and v  is the wind speed  corresponds to the 

ratio between the turbine angular speed
r  and the wind speed 

 

r

v

R
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The power coefficient pC is the turbine aerodynamic 

efficiency and depends on the tip-speed ratio   and the blades 

angle  . It has a lot of values that depend on the type of 

turbines, and is generally given by the constructor and can be 

defined by a mathematical approximation [5]. 

The torque aT is a nonlinear function of wind speed v , and 

the power coefficient pC . pC is a nonlinear function too, 

depending on tip speed ratio   and blades pitch angle  . In 

the high speed zone, the rotor speed is kept around a nominal 

speed and then aT can be approximated as follows: 
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where ,v  , and r are the deviations from the operating 

point where, avT , aT   and
raT  are instantaneous partial 

derivatives of the aerodynamic torque defined as [14]: 
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,r v  and  denote the values of rotational speed, wind 

speed and pitch angle at the operating point, respectively. 

 

2.2 Drive train model 

 

The main role of the drive train is to transfer the 

aerodynamic torque to the generator to raise the rotational 

speed according to generator needs.  

This model is constructed of a low-speed shaft and a high-

speed shaft linked together by the gearbox. The state space 

model of the drive train is expressed as follows [15]:  
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2.3 Pitch system model 

 

The pitch system is composed of three identical pitch 

actuators. The blade pitch is adjusted by the pitch actuator via 

rotation. It can be modelled as a second order system: 
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=
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                                                     (6) 

 

 is the pitch angle   , 
r is the pitch angle reference   ,

n   /rad s  is the natural frequency and   .  is the 

damping ratio of the pitch actuator model. 

Each of the three pitch angle systems has the same transfer 

function given above. The parameters values of the pitch 

systems model are identical when no fault appears, these 

parameters will change in the faulty case. 
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2.4  Generator and converter model 

 

The mechanical energy is converted by the generator to 

electric energy, while it is charged by a torque generating from 

a converter. The converter dynamics can be represented by a 

first order system [5]: 

 

,

1
( ) ( )g g r g

g

T t T T


= −                                                            (7) 

 

, ( )g rT t is the reference for the generator torque  Nm , g is 

the time constant  s . 

The power generated by the generator ( )gP t depends on the 

generator speed ( )g t and the applied load, as described in the 

equation below: 

 

( ) ( ) ( )g g gP t t T t=                                                                 (8) 

 

 

3.  DYNAMIC MODEL AND QUASI-LPV 

REPRESENTATION OF VARIABLE SPEED (WECS) 

 

3.1 The state space model 

 

By using Eq (4) in (5) and including Eq (6) and (7) the 

augmented nonlinear VSWECS can be formulated as: 
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where: ( )x t is the state vector, ( )u t is the control input vector,

( )y t  is the output vector and z  represents the nonlinearities. 

The control system deed both on generator in order to apply 

the reference electromagnetic torque ,g rT  and on the pitch 

actuator system to control the blades pitch angle  . 
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From the state space model it is clear that the system matrix 

( )A z  and the disturbance matrix ( )vB z are not fixed matrices 

and depend on the state variables. In order to get the best 

possible representation from this highly nonlinear system, the 

next subsection presents a Quasi-LPV representation of the 

system in Eq (9). 

 

3.2 Polytopic quasi-LPV model representation 

 

This approach consists to apprehend the overall behaviour 

of the system by an ensemble of local models. Each of them 

characterizes the system’s behaviour in a particular operating 

zone. The local models are then regrouped by means of an 

interpolation mechanism. The LPV models describe how the 

system dynamics vary as a function of one or more scheduling 

varying parameters. When the variation of the scheduling 

parameters depends on the state space variables and/or input 

variables, they are denoted Quasi-LPV. The use of this 

approach permits transferring and generalizing several 

methods developed in the linear monitoring field to the 

nonlinear systems and gives good approximation properties 

which can be used for monitoring.  

In this study the dynamic Quasi-LPV model is used to 

represent the nonlinear system of the Eq.(9) by using the 

polytopic transformation to describe the system as a convex 

combination of sub models defined by the vertices of a convex 

polytope  described by the following equation: 
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y t C z x t
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where: n nA  , n mB  and p nC   are the state space 

matrices with variable parameters and z  represents the 

scheduling vector around the equilibrium point. 

Function of the ith LTI model (see Table 1); ( )z t  is the 

scheduling variable:
iA , Β ,

viΒ  and C are system matrices 

with suitable dimensions. 

The Quasi-LPV model is derived depending on two 

scheduling variables: the pitch angle 1( )z t =  and the wind 

speed 2 ( )z t = v . These scheduling variables in WT are 

supposed varying in the operating range: 1 1 1( )d z t D    and

2 2 2( )d z t D  .  

For 1z  and 2z  there exist four functions: 
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For simplification, let us denote 
jO  in the general form: 
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Figure 2. (A) Polytopic space with four vertices, (B) Convex 

operating zone of the system 

 

For 1, 2j =  note that minjl and maxjl are the lower and 

upper bounds of the variable jz , respectively. 

Then, to obtain the polytopic Quasi-LPV model the 

scheduling functions of 
1( )z t and 

2 ( )z t should be chosen such 

that: 
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And, the activation function is selected as follows: 
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By considering the pitch angle and the wind speed as 

scheduling variables, The polytopic Quasi-LPV model (11) is 

constructed with four vertex linear models derived to represent 

the system dynamics at four operating points (see Figure 

2.(A)): 
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where parameters 
i  for 1,..., 4i =

 
are given in Table 1. 

 

Table 1. Vertex polytope models 

 
Vertex 

models 

i 

Scheduling 

function 

1 2,i i iF F F  

Model     

parameters 

1 2,i i i    

Sub LTI 

 models 

, , ,i ivA B B C  

1 1 2( , )O O  
1 2( , )D D  

1 1, , ,vA B B C  

2 21( , )O O  1 2( , )D d  
2 2, , ,vA B B C  

3 1 2( , )O O  1 2( , )d D    
3 3, , ,vA B B C  

4 1 2( , )O O  1 2( , )d d   
4 4, , ,vA B B C  

 

 

4. DECENTRALIZED SLIDING MODE OBSERVER 

MODEL BASED FDI DESIGN 

 

The DSMO design is based on a nonlinear MIMO system 

subject to actuator faults 
af  and sensor faults 

sf  
in the 

following Quasi-LPV model: 
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where ( ) nx t  is the state vector, ( ) mu t  is the input 

vector, ( ) l

af t  is an actuator fault, ( ) p

sf t  is a sensor 

fault and ( ) py t  is the measurable vector output.  For the 

ith local model
 

n n

iA 
 
is the state matrix, 

n mB  is the 

matrix of inputs, n l

iE  denotes the full rank fault 

distribution and 
p nC  is the matrix of output. Finally, z  

represents the scheduling vector which is formed by a subset 

of the input and/or the measurable state variables to define the 

validity regions of the local models. 

The reconstruction of the state variables consists to use the 

information provided by the input and output signals. The 

proposed observer for the multiple model (14) is a linear 

combination of local observers, each of them having the 

structure proposed by Walcott and Zak [27]. In this context, 

we consider that the inputs ( )af t are bounded, such as
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( )af t  , where 
 
is scalar and .  represents the 

Euclidean norm. It is also assumed that there exists matrices
n p

iG  , such that
0i i iA A G C= −  have stable eigenvalues 

and that there exists Lyapunov pairs ( ), iP Q  of matrices and 

other matrices p n

iF   respecting the following structural 

constraints: 
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The proposed observer has the following form: 

 

( )
1

ˆ ˆ( )

ˆ

M

i i vi i a i y i i

i

x h z A x Bu B v E f G e R v

y Cx

=


= + + + + +


 =



           (17) 

 

where ye  is the output error defined as follows: 

 

ˆ ˆ( )ye y y C x x Ce= − = − =                                                  (18) 

 

With e(t) represent the state estimation error, such as: 
 

ˆ( ) ( ) ( )e t x t x t= −                                                                  (19) 

 

The matrices
iG and the control variables

iv , with ( ) q

iv t 

must be determined in order to guarantee the asymptotic 

convergence of ˆ( )x t towards ( )x t . The terms ( )iv t compensate 

errors due to the unknown inputs. The dynamic of state 

estimation error is given as follows: 
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Theorem 1: The state estimation error between the multiple 

model (14) and the robust state multiple observer (16) 

converges to zero, if ( )iv t  are given by the following 

equation: 
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And if there exist a symmetric definite positive matrix P
which satisfies the following inequalities: 
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Proof: To show the asymptotic convergence of this multiple 

observer, let us consider the following Lyapunov function: 

 

( ( )) ( ) ( )TV e t e t Pe t=                                                            (23) 

 

Its derivative in respect to time, evaluated along the 

trajectory of the system by using equations (17) and (19), may 

be expressed as: 

 

( )
1

( ) ( ) 2 2
M

T T T T

i i i i i

i

V h z e A P PA e e PR u e PR v
=

= + + −        (24) 

 

where: i iA A G C= −
 

Using the second part of constraint (15), the derivative of 

the Lyapunov function becomes: 
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Using the relation (20), the derivative of the Lyapunov 

function becomes as follows: 
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Then, the state estimation error of the robust multiple 

observer (16) converges to zero if the relation (21) holds. 

 
4.1. Actuator fault reconstruction 

 

The goal of this section is to generate residuals that reflect 

the faults acting on the system (14). An ideal residual signal 

should converge to zero in the fault-free case and should 

diverge from zero when fault occurs.  Once a fault has been 

detected, it must be estimated. 

The fault estimation will specify the type of fault, its 

duration, its amplitude and eventually its probable evolution. 

Both the generator and pitch systems can fail, the generator 

fault can result in an offset and the considered pitch actuator 

faults are: pump wear, hydraulic leakage, high air content in 

the hydraulic oil, valve blockage, and pump blockage. 

In this case, the examined fault is high air content in the oil. 

Air is much more compressible than oil; it provokes an 

overshoot in the transient response because of the higher 

hydraulic oil elasticity. 

The normal air content in the hydraulic oil is 7%, while high 

air content in the oil corresponds to 15%, therefore the fault is 

modelled by changing the dynamics of the pitch actuator 

parameters n  and   from their nominal values to their faulty 

values in Eq (6). The parameters for the faulty pitch actuator 

are shown in Table 2 [15]. 

 

Table 2. Parameters for the pitch system under different 

conditions 

 

Faults ( )/n rad s    

Fault-free 11.11 0.6 

High air content in oil 5.73 0.45 

Pump wear 7.27 0.75 

Hydraulic leakage 3.42 0.9 
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The DSMO is used in this part to detect and reconstruct 

parameter faults in the pitch and generator dynamics of WTs 

model 

 

2 2

0 1 0

2
r

n n n
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− −      
                               (26) 
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Alterations in the actuator dynamics of pitch angle and 

generator torque can be examined by means of changes in the 

parameters (
n  and  ) and time constant

 g    respectively. 

Actuator offset faults can be modelled by adding an offset to 

the input signal [14]: 
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With: 
1a  and 

2a is a sum of the nominal value (
1 2, )a a and 

an offset value 
1 2( , )a a  . 

The altered pitch dynamics is then given by 
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Analogously, altered generator torque dynamics can be 

examined using the reciprocal value ga of the time constant 

g . 

1
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Defining the offset matrices ,A  and B  as: 
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where n  denotes the observer states system number, the 

observer system dynamics (without feedback terms) with 

modified actuator dynamics can be written as [16]: 
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In order to reconstruct the altered dynamics parameters 1a

, 2a  and ga , a fault matrix E and an actuator fault vector

af must be found such that: 
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Both the torque actuator fault ga and the pitch actuator 

faults 
1a  and 

2a  can be reconstructed. The reconstructed 

actuator fault vector is thus given by: 
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5. SIMULATION RESULTS 

 

The simulation tests use the WT benchmark system 

proposed by kk-electronic [13]. 

It is a three blade horizontal axis variable speed WT with 

full converter coupling. 

The operated ranges of pitch angle is 

0.01 0.03 ( )rad   and the range of wind speed is 

11 17 ( / )v m s  . 

The membership functions of the scheduling variables are 

depicted in figure 3.  

The local dynamic models are deduced from the nonlinear 

model (1) through dynamic linearization about operating 

points. Figure 4 shows the WECS state variables in real and 

estimation case 

In order to identify the actuator faults in the pitch angle and 

generator torque, a DSMO described in section 4, is used to 

estimate these faults. 

 

 
 

Figure 3. Scheduling variables: triangular membership 

functions (top) and temporal evolutions (bottom) 
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Figure 4. Evolution of real (solid blue line) and estimated 

states (dotted red line) of WECS based DSMO 

 

The reconstruction of actuator faults is based on the analysis 

of the residuals generated by the DSMO. High air content in 

the oil that represented a fault actuator in pitch angle has been 

added between 6s and 7s. 

For the generator torque an offset of 10000 [Nm] was active 

between 5.5s and 6.5s. 

The top of Figure 5 and Figure 6 illustrates the actual pitch 

angle and generator torque with and without faults scenario. 

The components of the reconstructed fault vector ˆ
af based 

on DSMO are depicted in the bottom of Figure 5 and Figure 6.  

It can be seen that both actuators faults are reasonably well 

reconstructed. Short peaks occur when the fault are switched 

on/off.  

The fault detection and reconstruction times for pitch angle 

and generator torque are approximately 0.48s and 0.36s, 

respectively. The DSMO is, therefore, a very short and 

efficient method for detecting and reconstructing the actuator 

faults. 

For a pitch angle sensor fault an additive gain factor (1.5 

rad) had been added between 4 s and 5 s. 

 
 

Figure 5. Actual pitch angle with and without fault (top) and 

the reconstructed actuator fault vector (  ) (bottom) 

 
 

Figure 6. Actual generator torque with and without fault 

(top) and the reconstructed actuator fault vector ( gT ) 

(bottom) 

 

The actual pitch angle with and without the sensor fault is 

given by the top of Figure 7. The bottom of Figure 7 

demonstrates that the residual is not zero without fault due to 

the presence of sensor noise; the residual is significantly 

increases after the fault occurs. The fault is detected, isolated, 

and reconstructed in approximately 0.26 s. 

 

 
 

Figure 7. Actual pitch angle with and without fault (top) and 

the reconstructed sensor fault vector (  ) (bottom) 

 

 

6. CONCLUSIONS 

 

In this paper, a condition monitoring system based on 

decentralized sliding mode observer (DSMO) is used to 

automate the diagnosis process of variable speed wind energy 

turbine. In this robust observer, stability is guaranteed by a 

quadratic lyapunov function. A polytopic Quasi-LPV model 

describing the dynamics of the WT is derived. It depends on 

two scheduling variables: the pitch angle and the wind speed. 

The nonlinear system behaviour is approximated using four 

vertex linear systems derived to represent the system dynamics 

at four operating points by using the polytopic convex 

transformation. 

The DSMO is used to detect and reconstruct sensor and 
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actuator parameter faults in the WT. It permits the detection 

and localisation by means of reconstruction of pitch angle 

sensor fault and any fault that implies a change in the dynamics 

of the pitch actuator system almost instantly. The performance 

of this observer was evaluated and we can confirm its 

efficiency. Finally, further work could be the practical 

implementation possibilities of this strategy. 

 

 

ACKNOWLEDGMENT 

 

The authors would like to gratefully acknowledge the 

Laboratory of Automatic and Signals Annaba (LASA), Badji 

Mokhtar University, P.O. Box 12, Annaba 23000, Algeria. 

 
 

REFERENCES  

 

[1] Piyali G, Akhtar K, Aladin Z.(2017). Optimum fuzzy 

logic control system design using cuckoo search 

algorithm for pitch control of a wind turbine. Advances 

C 72(4): 266-280. 

[2] Arama FZ, Bousserhane IK, Laribi S, Sahli Y, Mazari B. 

(2018). Artificial intelligence control applied in wind 

energy conversion system. International Journal of 

Power Electronics and Drive System (IJPEDS) 9(2): 

571-578. https://doi.org/10.11591/ijpeds.v9n2.pp571-

578 

[3] Fadil H, Elhafyani ML, Zouggar S. (2018). Enhanced 

three-phase inverter fault detection and diagnosis 

approach-design and experimental evaluation. 

International Journal of Power Electronics and Drive 

System (IJPEDS) 9(2): 559-570. 

https://doi.org/10.11591/ijpeds.v9n2.pp559-570 

[4] Chen F, Fu ZG. (2016). Wind turbine failure risk 

assessment model based on DBN. Advances C 71(1): 

110-124. 

[5] Boumaiza A, Arbaoui F, Saidi ML. (2014). Diagnostic 

des défauts à base d’observateur dans un système éolien. 

Mediterranean Journal of Modeling and Simulation 1(1): 

045-055. 

[6] Park JH, Park GT. (2003). Adaptive fuzzy observer with 

minimal dynamic order for uncertain nonlinear systems. 

IEEE Proceedings Control Theory and Applications 

150(2): 189-197. https://doi.org/10.1049/ip-

cta:20030148 

[7] Shaker MS, Patton RJ. (2014). Active sensor fault 

tolerant output feedback tracking control for wind 

turbine systems via TS model. Engineering Applications 

of Artificial Intelligence 34: 1-12. 

[8] Boussairi Y, Abouloifa A, Lachkar I, Hamdoun A,  

Aouadi C. (2018). Modeling and nonlinear control of a 

wind turbine system based on a permanent magnet 

synchronous generator connected to the three-phase 

network. International Journal of Power Electronics and 

Drive System (IJPEDS) 9(2): 766-774. 

http://doi.org/10.11591/ijpeds.v9.i2.pp%25p 

[9] Edwards C, Spurgeon SK. (2000). Sliding mode 

observers for fault detection and isolation. Automatica. 

36(4): 541-553. https://doi.org/10.3182/20020721-6-ES-

1901.00789 

[10] Tan CP, Edwards C. (2001). An LMI approach for 

designing sliding mode observers. Int. J. Control. 74: 

1559-1568. 

https://doi.org/10.1080/00207170110081723 

[11] Walcott BL, Zak SH. (1987). State observation of 

nonlinear uncertain dynamical systems. IEEE Trans. 

Automat. Control 32: 166-170. 

https://doi.org/10.1109/TAC.1987.1104530 

[12] Ben Hamouda L, Bennouna OAM, Langlois N. (2013). 

Quasi-LPV model predictive reconfigurable control for 

constrained nonlinear systems. Conference on Control 

and Fault-Tolerant Systems (SysTol), Nice, France. 

[13] Odgaard F, Johnson K. (2013). Wind turbine fault 

detection and fault tolerant control – an enhanced 

benchmark challenge. American Control Conference 

(ACC), 4447-4452.  

[14] Dari H, Mehenaoui L, Ramdani M. (2015). An optimized 

fuzzy controller to capture optimal power from wind 

turbine. 4th International Conference on Renewable 

Energy Research and Applications, Italy, pp. 815-820. 

[15] Esbensen T, Sloth C. (2009). Fault diagnosis and fault-

tolerant control of wind turbines. Master’s Thesis, 

Department of Electronic Systems, Aalborg University, 

Denmark.  

[16] Georg S, Schulte H. (2014). Diagnosis of actuator 

parameter faults in wind turbines using a takagi-sugeno 

sliding mode observer. Intelligent Systems in Technical 

and Medical Diagnostics. Springer, Berlin, Heidelberg, 

230. https://doi.org/10.1007/978-3-642-39881-0_2 

 

 

NOMENCLATURE 

 

dt   The torsion damping coefficient

 / ( / )Nm rad s  

gB   Viscous friction of high-speed shaft 

 / ( / )Nm rad s  

rB   Viscous friction of low-speed shaft 

 / ( / )Nm rad s  

gJ   Inertia of the high-speed shaft 
2kgm    

rJ   Inertia of the low-speed shaft 
2kgm    

dtK  The torsion stiffness  /Nm rad  

gN  The drive train gear ratio  / ( / )Nm rad s  

( )aT t   The aerodynamic torque  Nm  

( )gT t   The generator torque  Nm  

r   The rotor speed  /rad s  

g   The generator speed  /rad s  

( )t   Torsion angle of the drive train  rad  

 

Subscripts 

 

DSMO Decentralized sliding mode observer 

Quasi-LPV 

SMO 

Quasi linear parameter varying 

Sliding mode observer 

VSWECS Variable speed wind energy 

conversion system 

WECS Wind energy conversion systems 

WT Wind turbines 
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